WILLIAMS ADVANCED ENGINEERING

PLATFORM APPROACH TO LIGHTWEIGHTING & ELECTRIFICATION

Welsh Automotive Forum - Autolink Event

19th June 2019 Tony Martindale, Head of Mechanical Engineering

WILLIAMS ADVANCED ENGINEERING PROFILE

ABOUT US

- Williams founded in 1977
- Public Limited Company
- 1000 Williams Group Employees (325 at Williams Advanced Engineering)
- 114 F1 race victories and 16 World Championships
- Williams Advanced Engineering formed in 2010
- World class design, manufacturing and testing facilities

CORE COMPETENCIES

- Aerodynamics and Thermodynamics
- Lightweighting
- Electrification
- Vehicle Integration
- Precision manufacturing and assembly
- Design and development
- Data capture and analysis
- Testing and simulation

FACILITIES

- Two wind tunnels (50% 100% scale)
- Low-volume composite manufacturing
- · Latest suite of CAD / CAM / CAE tools
- Prototype build and test
- Precision machine shop
- Comprehensive rig testing
- On-site vehicle simulators
- Battery build and test
- CMM quality assurance
- Multiple build areas with extensive sub assembly facilities

WAE AWARDS

- MIA Business of the Year 2012
- Oxford Brookes Innovation Award 2013
- British Renewable Energy Pioneer 2014
- Race Tech Most Innovative New Motorsport Product Award 2015
- Royal Automobile Club Simms Medal 2015
- The IET Horizontal Innovation Award 2016
- British Engineering Excellence Award for Consultancy of the Year 2016
- MIA Business Excellence Award for Technology and Innovation 2017
- ISO 9001:2015 awarded July 2017
- Queen's Award April 2018

Strictly private and confidential. ©Williams Advanced Engineering Limited 2019.

+

HISTORY OF WILLIAMS ELECTRIFICATION

Williams Advanced Engineering has a demonstrable track record of delivering high-performance propulsion systems for ambitious engineering programmes.

Strictly private and confidential. ©Williams Advanced Engineering Limited 2019.

+ WHY THE NEED? CUSTOMER LEVEL ATTRIBUTE REQUIREMENTS

- Increased demand for Electric Vehicles operating in a balanced set of requirements, comparable or better than traditional ICE vehicles.
- Challenges of balancing what matters to the end user:
 - Performance
 - Range
 - Cost
- Current lack of in-depth understanding of electric vehicle technology, leads to inability to maximise performance.
- System Integration approach required to maximise the performance

WILLIAMS ROADMAP

+

NEXT GENERATION LIGHTWEIGHTING

Now	Near-Future	Next
 Existing & Williams Technologies: Integrated EV Platform (FW-EVX). 223[™] and RACETRAK[™] composite technologies. Structural compression overmoulding. Battery design and integration. 	<section-header></section-header>	 Next-Gen Platform: Application of 223™ and RACETRAK™ combined with SMC compression over-moulding to create FW-EVX² platform. Integrated flexible performance platform designed for higher volume production compared to FW-EVX. Development of simulation tools to support optimisation of new technologies.

e

EVX KEY FEATURES

Composite / hybrid chassis Innovative cell / module enclosure Structural integration of module case Battery cooling system via sills Energy absorbing sill Integration of battery cooling Wireless module control to BMS link Composite wishbones

POWERTRAIN

Twin motor rear drive (Yasa P400, through Xtrac P1227) enabling torque vectoring Single motor front drive (Yasa P400, through Xtrac Differential) Power availability up to a maximum of 480kW On board AC charging

LIGHTWEIGHT EV PLATFORM

PLATFORM WEIGHT

TOTAL	955kg
Wheels	80kg
Chassis / Suspension	180kg
Cooling System	70kg
Modules / Busbars	100kg
Power Electronics / Charging	35kg
Mechanical Powertrain	150kg
Cells	340kg

WHEELBASE & MODULARITY

Nominal wheelbase 2800mm

Wheelbase designed to be modular with battery module width being 136mm

VEHICLE & RANGE

Flexible vehicle architecture platform Vehicle mass. 1750kg Vehicle Cda 0.27 Standard energy: 80kWh Calculated NEDC range: 343 miles

BATTERY & MODULES

Structural exoskeleton with lightweight frames 10 pouch cells per module 38 modules. Standard wheelbase Arranged in rows of 3 across the vehicle 2.1 kWh per module 800V system

+ BATTERY ENCLOSURE

WAE 223 FULCRUM TECHNOLOGY

2D TO 3D BY ENGINEERED COMPOSITE FULCRUM TECHNOLOGY

- Creation of a 3D structure from a singe 2D composite preform
- 'Open' architecture pioneers novel manufacturing operation
- Technology being applied to body structures and battery cases
- Low marginal cost, high production rate: circa 400kg.hr-1 fibre deposition
- Low press tooling cost
- Simultaneous in-process bonding of primary and secondary structures
- Multi-material compatible
- Patent pending

ADVANCED ENGINEERING

WILLIAM

8

+ CONTROL SYSTEMS

WILLIAMS VEHICLE CONTROL MODULE GEN 2

ENGINEERED FOR LOW VOLUME AUTOMOTIVE APPLICATIONS

A custom Vehicle Control Module

developed with motorsport in mind. A combination of the dual ARM Cortex-A9 and the programmable FPGA, ensure it can be configured for process intensive tasks. With a maximum of 6 CAN bus, it ideally suited for use in the control of EV powertrain and vehicle systems.

Processor Core

Xilinx Zynq 70	20 System on Chip
----------------	-------------------

- Dual ARM Cortex-A9
- FPGA 85k Cells
- 128Mb (16MB) Flash Memory
- 16GB Logging Memory

4Gb DDR3 SDRAM

Inputs

- 37 x Analogue i/p (0-5v, 1kHz)
- 4 x Analogue i/p (0-5v, 400kHz)
- 8 x Analogue i/p (0-5v,0-12v or 1k/5v pull-up, 1kHz)
- 8 x NTC1000 Temperature Inputs
- 8 x Digital Inputs (12v)
- 1 x 12V Digital Wake-Up Pin
- 8 x Digital Inputs (3.3v)

Outputs

- 2 x 5v Sensor Supplies
- 4 x Half Bridge Outputs (12v, 5A)
- 3 x High Side Drive Outputs (12v#1, 3A)
- 8 x High Side Drive Solenoid Outputs i/p (12v, 2.5A)
- 6 x Low Side Drive (3A)
- 5 x High Side Drive Outputs (3.3v)

Communications

- 4 x CAN 2.0B
- 1 x 100Mb Ethernet
- 1 x RS232
 - 4 x LIN (Future Expansion)
 - 2 x CAN 2.0B (Future Expansion)

+**OPTIMISED THERMAL SOLUTIONS**

SIMULATION RESULTS

Modelled airflow through vehicle shows positive thermal results with minimal aerodynamic drag impact - Highly dependent on overall vehicle design

- Pressure drop is lower for the central duct layout.
- Due to battery packaging requirements, external duct approach chosen

VELOCITY

STAR-CCM+

STAR-CCM+

+**CRASH ROBUSTNESS**

FRONT & SIDEPOLE CRASH RESULTS

FRONTAL IMPACT (FFB) - 56 KPH

- Crush cans are 3.6 mm thick.
- Energy absorbed is 59 % of total impact.

SIDE POLE IMPACT - 32 KPH

- The sill structure collapses in a progressive manner.
- The battery structure remains undamaged.

WILLIAM

ADVANCED ENGINEERING

2

+ BODY INTERFACING

TORSIONAL STIFFNESS

- stiffness, even without body
- Battery is a key structural component
- Opportunities to balance cost, mass and performance

+ THE FUTURE DIRECTION FW-EVX2

PLATFORM SCALABILITY

Multiple Options for Scalability:

- New performance platform that can be scaled across multiple vehicles.
 - Extended Wheel Base
 - 4-Seater
 - SUV
- Flexible manufacturing process for customer package requirements such as H-point and seating configurations.

INNOVATIVE MANUFACTURING

Short fibre compression over moulding

- Structural reinforcement of outer shell.
- Housing for modules.

WILLIAMS

- Includes over moulded inserts for mounting points.
- Utilising recycled chopped fibres

ADVANCED ENGINEERING

COST COMPETITIVENESS

Objective for FW-EVX² to be leader for piece cost and competitive for weight compared to benchmark technologies in the performance space.

+ CONCLUSIONS

SYSTEM INTEGRATION KEY TO DELIVERING CUSTOMER LEVEL ATTRIBUTES

- Increased demand for Electric Vehicles operating in a balanced set of requirements, comparable or better than traditional ICE vehicles.
- Challenges of balancing what matters to the end user:
 - Performance, Range & Cost
- Williams Advanced Engineering approach is to maximise system integration to deliver the overall vehicle attribute characteristics
- Lightweighting, Aero / Thermal solutions key to maximising Energy Management in an Electrified Vehicle
- Future opportunities exist for further exploitation in:
 - Platform Scalability
 - Innovative Manufacturing
 - Cost Competitiveness in Performance domain

Strictly private and confidential. ©Williams Advanced Engineering Limited 2019.

WILLIAMS ADVANCED ENGINEERING

Welsh Automotive Forum - Autolink Event

19th June 2019 Tony Martindale, Head of Mechanical Engineering

Strictly private and confidential. ©Williams Advanced Engineering Limited 2019.

